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Flow around a wall-mounted cube is an example of a turbulent flow around a three-
dimensional bluff body attached to a surface. The main experimentally observed
feature of this type of flow is the appearance of complex vortical structures, e.g.
a horseshoe vortex originating in front of the body and enveloping it. The current
paper is a follow-up to Yakhot, Liu & Nikitin (2006) in which we presented results of
direct numerical simulation (DNS) of turbulent flow around a cube. Here, it is shown
that unsteadiness of the considered flow is caused by inviscid–viscous interaction
between the horseshoe vortex and the narrow band of positive vorticity attached to
the surface in front of the cube. Details of the spatio-temporal evolution of large-
scale vortical structures, including samples of long-term visualization and turbulence
statistics, are presented. For the normal-to-the-wall velocity, in the vicinity of the
cube’s front face, the results reveal an anomalous probability distribution, namely, a
bimodal distribution and one with high kurtosis.

1. Introduction
Turbulent flow in a channel with wall-mounted cubes represents a general

engineering configuration that is relevant to many applications. Owing to the simple
geometry but complex vortical structures and generic flow phenomena associated
with a turbulent flow, this flow has been used for bench-marking purposes to validate
turbulence models and numerical methods. The first measurements of the turbulent
velocity field, energy balance and heat transfer around a surface-mounted cube were
published in the 1990s. Since then, several experiments have been performed on the
flow around a single wall-mounted cube in a turbulent channel flow. Results showed
that this flow is characterized by the appearance of a horseshoe-type vortex at the
windward face, an arc-shaped vortex in the wake of the cube, flow separation at the
top and side faces of the cube and vortex shedding. The flow features and experimental
data for time-averaged flow quantities have been well documented (Hussein &
Martinuzzi 1996; Martinuzzi & Tropea 1993; Meinders, Hanjalić & Martinuzzi
1999; Meinders & Hanjalić 1999). Most numerical studies were performed using the
Reynolds-averaged Navier–Stokes (RANS) method with different turbulence models
and large-eddy simulations (LES) (Iaccarino et al. 2003; Krajnović & Davidson
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1999; Rodi et al. 1997; Shah & Ferziger 1997). For the flow considered in the present
study, however, the RANS approach could not reproduce the details of the complex
fluid structure near the wall, e.g. the converging–diverging horseshoe vortex and the
separation of the boundary layer in front of the cube, nor the separation length
behind the cube. This inability is commonly attributed to the fact that the RANS
approach disregards the unsteady interaction of large-scale vortices. On the other
hand, global flow features and characteristics predicted by LES and more recently
by unsteady RANS-based modelling (Iaccarino et al. 2003) showed good agreement
with experimental data.

The current paper is a follow-up to Yakhot, Liu & Nikitin (2006) where we
presented DNS-based results of turbulence statistics including mean-square intensities,
Reynolds shear stresses, turbulence kinetic energy and dissipation rate. In that paper,
we drew attention to the negative turbulence production obtained in the region in front
of the cube (where the main horseshoe vortex originates). This negative production
indicates the non-equilibrium states and the reverse energy transport from small to
large scales which are intrinsic features of essentially large-scale anisotropic flows. In
the present paper, we report DNS-based results on the spatio-temporal evolution of
large-scale vortical structures developing in front of the cube.

2. Results
2.1. Flow pattern

In this paper, we use the DNS data of Yakhot et al. (2006), where an immersed
boundary method was applied for simulating the flow around a wall-mounted cube in
a fully developed turbulent channel for a Reynolds number Re = 5610, based on the
mean velocity (Um) and the channel height (3h). The coordinates and flow parameters
presented in this section are non-dimensionalized, and the cube’s height, h, and the
mean velocity Um are characteristic length and velocity. The size of the computational
domain is 14 × 3 × 6.4 in the streamwise (X), normal to the channel walls (Y ) and
spanwise (Z) directions, respectively; its inlet and outlet are located at X = 0 and
X = 14, and the cube is located between 3 � X � 4, 0 � Y � 1, −0.5 � Z � 0.5. The
computational grid consists of 181×121×256 gridpoints in the X-, Y - and Z-directions.
A non-uniform mesh was used in the streamwise and wall-normal directions, with
gridpoints clustering near the channel and cube walls. The finest grid spacing is of
the order �Xmin = 0.024 near the cube’s front and rear walls and �Ymin = 0.006 near
the channel and cube’s top walls. To generate a DNS-based fully developed turbulent
flow to be used as the inlet condition to the channel with a cube, the computational
domain also includes an entrance channel measuring 9 × 3 × 6.4. The computational
grid in the entrance channel had 64 × 121 × 256 gridpoints in the X-, Y - and Z-
directions, respectively. Periodic boundary conditions were imposed in the spanwise
Z-direction, and convective velocity conditions were prescribed on the downstream
outlet boundary. Using periodic boundary conditions in the spanwise direction raises
a question about the reliability of the results for the case of a wall-mounted cube in
a channel. This issue is beyond the scope of the present study, but the LES results
of Shah & Ferziger (1997) were obtained in a computational domain of 10 × 2 × 7
using periodic boundary conditions in the spanwise direction. The spanwise size (7)
was chosen to ensure that the blockage effects are small and the results were found
to be in good agreement with the experimental data (Martinuzzi & Tropea 1993). In
Yakhot et al. (2006), the accuracy of the computations was controlled by comparing
computational resolution around the cube with Kolmogorov’s length scale and by
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Figure 1. Time-averaged streamlines and pressure distribution (background map) on the
symmetry plane. Flow is from left to right; for labels, see Yakhot et al. (2006).
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Figure 2. (a) Time-averaged streamlines. (b) Time-averaged spanwise Ωz-vorticity contours
in the symmetry plane Z = 0; dashed line: negative vorticity (clockwise rotation), solid line:
positive vorticity.

grid refinement. For the grid refinement test, a computational grid of 241 × 141 × 256
gridpoints in the main channel was used while additional gridpoints were added near
the front and top of the cube and also near the channel base. The lengths of the main
separation regions in front, on the top and behind the cube (see figure 1) obtained
on two computational grids were found to be practically identical.

In this paper we decompose the velocity u = (ux, uy, uz) into stationary (time-

averaged) and fluctuating parts, u = U + u′, and use the following notation: U =
(U, V , W ), u′ = (u, v, w). Figure 1 shows the time-averaged streamlines and pressure
distribution (the background) at the symmetry plane. In figure 2(a), we show the
time-averaged streamlines in front of the cube, the region of primary interest in this
paper. Figure 2(a) reproduces with noteworthy similarity the pattern experimentally
obtained by Martinuzzi & Tropea (1993). The streamlines clearly depict two nodal
points (foci). One node at the point (2.55, 0.12) is related to the primary (horseshoe)
vortex. The origin of the second node at the point (2.25, 0.07) will be elucidated
below. This topology was analysed according to kinematical principles for flows
around surface-mounted obstacles by Hunt et al. (1978). However, they assumed a
saddle point between the nodes, which was not observed in our DNS data. Figure 2(b)
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(c) t = 1825 (d ) t = 1830
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(e) t = 1835 ( f ) t = 1840

–6
–4

–4

–2

–2

–2

0
0

0

0

0

0

2

2

4
4 8

-10

–8

–6

-6

–4

–4

-4

–2

–2

–2

–2 -2

-2

–2

0

0
0

0

0

0

0

0

0

2 2

2 4
4

6

8
8

08

2.0 2.2 2.4 2.6 2.8 3.0
0

0.1

0.2

0.3

2.0 2.2 2.4 2.6 2.8 3.0
0

0.1

0.2

0.3

2.0 2.2 2.4 2.6 2.8 3.0
0

0.1

0.2

0.3

2.0 2.2 2.4 2.6 2.8 3.0
0

0.1

0.2

0.3

2.0 2.2 2.4 2.6 2.8 3.0
0

0.1

0.2

0.3

–10

4

–8

–4–6

Figure 3. Contours of the instantaneous spanwise vorticity ωz in the symmetry plane Z = 0
in front of the cube. Flow is from left to right; the cube’s front face is at X = 3; dashed line:
negative vorticity (clockwise rotation), solid line: positive vorticity.

shows contours of the time-averaged spanwise vorticity Ωz = ∂V /∂x − ∂U/∂y in the
symmetry plane. From figure 2(b), we can see that as a result of the mean backflow,
the vorticity changes its sign close to the wall. This change induces an inflection in
the mean velocity profile, which usually leads to instability.

2.2. Large-scale vortices

DNS data on the evolution of the instantaneous spanwise vorticity ωz = ∂uy/∂x −
∂ux/∂y are shown in figure 3. The dominant characteristic frequency of the vertical
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velocity (v) at the point P1(2.53, 0.12, 0) (which is in the vicinity of the horseshoe
vortex centre, figure 2a) was found to be about 0.08. This value corresponds to the
non-dimensional characteristic time of about 12.5. The dynamics of the horseshoe
vortex is imposed by the positive vorticity concentrated into a very narrow band in
the streamwise direction. Its interaction with the horseshoe vortex of opposite negative
sign leads to ejection of the low-speed fluid away from the wall, as illustrated by the
solid lines in figure 3(a). At an earlier stage, on the left of the lifted-up fluid, we
can observe the development of a secondary vortex of the same sign as the primary
horseshoe vortex. The second nodal point, indicated in figure 2, is a vestige of that
secondary vortex. As lifted-up fluid is entrained by the main stream, it wraps around
the horseshoe vortex (figure 3b, c) causing it to weaken (figure 3d, e). We speculate
that two vortices shown in figure 3(e) are part of the same event illustrated in
figures 3(a–d), while figure 3(f ) depicts a successive event very similar to that shown
figure 3(b). Figure 3 illustrates a scenario of an unsteady inviscid–viscous interaction
between the horseshoe vortex and the narrow positive vorticity-loaded band attached
to the wall. These events match those discussed in Doligalski, Smith & Walker (1994)
and Simpson (2001), that were based upon experimental findings.

Hunt, Wray & Moin (1988) defined an ‘eddy’ (structure) as a region with a positive
second invariant Q =0.5(‖Ω‖2 −‖S‖2), where ‖S‖ =[Tr (SSt )]1/2, ‖Ω‖ = [Tr (ΩΩ t )]1/2

and S and Ω are the symmetric and antisymmetric components of the velocity gradient
tensor ∇u ≡ ∂ui/∂xj , i.e. Sij = 0.5(∂ui/∂xj +∂uj/∂xi) and Ωij = 0.5(∂ui/∂xj −∂uj/∂xi).
Positive Q indicates that the vorticity prevails over shear. By definition, Q is the source
term in the Poisson equation for pressure ∇2p = 2Q, and the criterion Q > 0 indicates
the low-pressure regions that can be associated with vortical structures. In figure 4,
we present the iso-surfaces of Q = 10 at the same time instants as the instantaneous
vorticity contours in figure 3. The surfaces in figure 4(c–e) also indicate a weakening
of the vortical structure. Sometimes, the vortex structure in front of the cube collapses,
as shown in figure 5, though this is a very rare event. Comparing figures 4 and 3
suggests that two-dimensional vorticity contours are the vestiges of the Q-iso-surfaces
on the symmetry plane Z = 0. However, the ability of the Q-criterion to detect the
location and size of a vortical structure is not quite so obvious (Jeong & Hussain
1995).

In the following, we present the results related to the fluctuating velocity field
u′ = (u, v, w). Figure 6 shows several snapshots of the DNS-based visualization. The
alternation of the positive and negative velocity strips (‘streaks’) indicates coherent
vortical structures. Figures 3 and 6 show patterns obtained at the same time instants.
In figure 6, we can recognize the dark strips (ejection) and imprints of the rotating
clockwise primary and secondary vortices, namely the light strips of the negative v.
The elongated patterns of the fluctuating vertical velocity point out a reciprocating
motion of the vortical structures in the near-wall region.

2.3. Turbulence statistics

DNS-based visualization has revealed qualitatively the chaotic motion of the vortical
structures in front of the cube. To obtain turbulence statistics and quantitative mea-
surements of this phenomenon, data were collected at points selected near the wall
during the time for period of 1700 time units for intervals of �t = 0.005. We computed
the velocity probability distribution function (PDF), skewness (S) and kurtosis (Ku).

In figure 7(a), the PDF curve suggests a ‘bimodal’ distribution for the fluctuating
vertical v-velocity as was also experimentally obtained by Hussein & Martinuzzi
(1996). This bimodality may indicate that the sample is not homogenous and that
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observations may arise from two ‘overlapping’ distributions. In our case, this pheno-
menon can mainly be attributed to the interaction of the ejected fluid with the primary
and secondary vortices, and implies that when a flow aperiodically switches from one
mode to another, high-momentum fluid sweeps toward the wall, or low-momentum
fluid is ejected away from the wall. At the sampling point P1(2.53, 0.12, 0), the
time-averaged vertical velocity is small positive, V = 0.013. The clearly pronounced
peak at v/vrms ≡ (uy − V )/vrms ≈ −0.5 corresponds to the instantaneous vertical
velocity uy ≈ −0.15, which means that the fluid is sweeping towards the wall (e.g. see
figure 3d). The second peak in figure 7(a) depicts an ejection mode where the primary
vortex entrains the near-wall fluid (figure 3c). The fact that we did not obtain the
camelback shape usually associated with a bimodal distribution may result from the
choice of a sampling point where the time-averaged vertical velocity turned out to be
small.

In Yakhot et al. (2006), we reported that maximum negative turbulence energy
production at the symmetry plane Z = 0 was obtained in the vicinity of the point
P3(2.82, 0.04, 0.0) marked in figure 2(a). The probability distribution of the u and w

velocity components at that point was found to be Gaussian. In contrast, figure 7(b)
shows a non-Gaussian probability distribution of the vertical velocity v with kurtosis
Ku = 10.4 instead of a Gaussian value of 3. This anomalously high kurtosis indicates
the spatio-temporal intermittent nature of turbulence in that region. The time trace in
figure 8(a) shows infrequent spikes with very large fluctuations of the vertical velocity,
−8 < v/vrms < 6. The sequence of positive/negative spikes leads to the deviation from
a Gaussian distribution. These spikes may be a result of the ejection/sweeping events
being quite rare in this corner region, and implies that the corner space becomes
positive-vorticity-loaded with the possibility that a vortex may be generated there.
The spanwise vorticity snapshot taken at t = 1860 (figure 8b) corresponds to a positive
spike that can be seen in figure 8(a) at t = 1860 and shows that a vortex has been
generated in the vicinity of the sampling point P3(2.82, 0.04, 0.0).

3. Summary
We performed DNS of a flow around a wall-mounted cube in a fully developed

turbulent channel and analysed the DNS data on the spatio-temporal evolution of
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large-scale vortical structures developing in front of the cube. The results support the
view that unsteadiness of this flow caused by inviscid–viscous interaction between the
horseshoe vortex and the narrow band of positive vorticity attached to the channel
wall in front of the cube. This interaction leads to ejection of the low-momentum fluid
away from the wall. The lifted-up fluid is partially swept back by the secondary vortical
structure, while the rest is entrained by the main stream, enhancing disturbances there.
For selected locations in front of the cube, we present turbulence statistics, including
the probability distribution function, skewness and kurtosis. For the vertical velocity
component, the results revealed an anomalous probability distribution, namely a
bimodal distribution and one with high kurtosis. Both these phenomena stem from
the spatio-temporal intermittent nature of turbulence in that region.
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